Advanced Macro Topics: Utilities and Examples

Arthur L. Carpenter
California Occidental Consultants

KEY WORDS

autocall, function, macro, macro functions,
SASHELP, utility, views

ABSTRACT

Numerous utilities have been created using
the SAS® Macro Language and many of the
newer utilities take advantage of recent
changes and enhancements to the SAS®
System. The examples of macro utilities
presented in this paper include the use of:

. SASHELP views
. DATA step and SCL functions using
%SYSFUNC

. the AUTOCALL library
. system supplied AUTOCALL macros

The macros detailed in this paper include
examples of:

. copying members of a catalog

. subsetting data sets

. working with lists of data set
variables

. counting observations

. converting macro text to lower case

Each of the examples presented in this
paper is taken from the author's latest BBU
book "Carpenter's Complete Guide to the
SAS® Macro Language".

COPYING MEMBERS OF A CATALOG

This macro is used to copy selected
members of a catalog in the TEST
environment to a production area. The
names of the members do not need to be
known prior to execution, however a filter is
available to select members beginning with
certain types of names.

The SASHELP.VSCATLG view @ is used to
create a list of the members in the TEST
library. A DATA _NULL_ step is used with
a subsetting IF @ to select the members of
interest. The SELECT statement © used
within PROC DATASETS is built using the
macro variables (&&CNAME&I) that contain
the member names ® and the number of
names (&CATCNT) ©.

* Copy catalogs from the TEST to the
* PRODUCTION areas.;

%macro catcopy(test,prod);

* test - libref for the test area

* prod - libref for the production
* area

*-
’

* Determine catalogs in TEST area;

data _null_;

set sashelp.vscatlg
(where=(libname="%upcase(&test)")); 1]

length ii $2;

* Select only some of the catalog
* members;
if memname in: (DE', 'ED', 'PH"); (2]

* Create macro variable for each

* member;

i+1;

ii=left(put(i,2.));

call symput(‘cname’||ii, nemname); 3]
call symput(‘catcnt', ii); (4]

run;

proc datasets ;
copy in=&test out=&prod
memtype=catalog;

select
%do i = 1 %to &catcnt; (5)
&&cname&i
%end;

’quit;
%mend catcopy;

%catcopy(appls,work)

The Technical Support section of SAS
Communications Volume xxii 4th Qtr. 1996,
p. 43 has a similar example that builds the
new catalogs with modifications using
PROC BUILD.

SUBSETTING DATA SETS

The macro %SELPCNT can be used to
select a specified percentage of the
observations of a data set. In this example
we would like to base the subset on the
value of a variable e.g. select the
observations with the largest values. The
POINT and NOBS options on the SET
statement can be used in the selection
process. In the following macro, the data
are sorted first @ and then subsetted in the
following DATA step. The NOBS option &
creates a variable on the PDV which is
equal to the number of observations in the
data set. This allows us to calculate the
number of observations to read (IDPCNT)
®. The count is based on total
observations not total number of distinct
values of the ID variable (&IDVAR).

%macro selpcnt(dsn,idvar,pcnt);

* Sort the incoming data set in

descending order;

proc sort data=&dsn o
out=items;

by descending &idvar;

run;

* Read the first IDPCNT observations

* from ITEMS;
data topitems;
idpcnt = nobs*&pent; (3]
do point = 1 to idpcnt;
set items point=point nobs=nobs 2

output;

end;

stop;

%mend selpcnt;

%selpcnt(sasclass.biomass,bmtotl,.25);

CHECKING THE EXISTENCE OF SAS
DATA SETS

At times we would like to be able to
determine if a data set exists before we
execute a procedure such as PROC PRINT
against it. When creating systems
dynamically some data sets may not exist
under certain circumstances and we need
to be able to determine their status at
execution time.

In Release 6.11 and later the macro
function %SYSFUNC can be combined with
functions such as EXIST to check for the
existence of a data set.

%macro exist(dsn);

%global exist;

%if %osysfunc(exist(&dsn)) 0 %then
%let exist=YES;

%else %let exist=NO; (2]

%mend exist;

O The SCL EXIST function returns a value
that is equal to 1 when the data set exists.
Otherwise it returns a 0 causing the %IF to
be false @& which results in &EXIST being
set to NO.

The EXIST function is combined with the
%SYSFUNC macro function in a similar
example in SAS® Macro Language,
Reference, First Edition, pp. 242.

WORKING WITH LISTS OF DATA SET
VARIABLES

This example assumes that you have
created a macro variable that contains a list
of data set variables. In this case the
macro variable (&KEYFLD) contains the
variables that form the key fields (variables
used in a BY statement).

A sample definition of the macro variable
&KEYFLD might be:

%let keyfld = investid subject treatid;

In the program that will use this list we
might expect to see a BY statement such
as:

by &keyfld;

In order to use FIRST. and LAST.
processing, however we need to know the
name of the last variable in the list. This
allows us to write a statement such as:

if last.treatid then do;

To do this using &KEYFLD we need to
know its component parts (variable names
in the list) and the number of names. The
following DATA step can be used to create
a series of macro variables (&KEY1,
&KEY2, ..), one for each name in
&KEYFLD.

*determine the list of key vars;
data _null_;

* count the number of keyvars
* save each for later;

str="&keyfld"; (1]
do 1 =1to 6;
key = scan(str,i," "); (2]

if key ne "' then do;
ii=left(put(i,1.));
call symput('key'||ii,

trim(left(key)));

call symput('keycnt',ii); (4]
end;

end;

run;

®

O The variable STR is created to hold the
list using an assignment statement.
SYMGET could also have been used.

@ This string is then broken into words
using the SCAN function.

® Macro variables are then created using
the SYMPUT routine.

® The number of key variables is also
counted and assigned to &KEYCNT.

Once the macro variables have been
established statements that require FIRST.
or LAST. processing can be rewritten as:

by &keyfld;
if last.&&key&keycnt then do;

Since &KEYCNT is the number of key
variables &&KEY&KEYCNT will resolve to
the name of the last variable in the list
stored in &KEYFLD.

Since the same result can be accomplished
using only macro statements, the DATA
step in the previous example is not as
efficient as it could be. In the following
example the %DO %UNTIL loop is used to
step through and count the elements in
&KEYFLD.

%Macro doit;

Y%let | = 1; (1]

%do %until

(Y%scan(&keyfld,&l,%str())=%str()); (2]
%let key&l=

%scan(&keyfld,&l,%str());
%let | = %eval(&l + 1);
%end,;
%let keycnt = %eval(&I-1); (5]
%mend doit;

O Initialize &l which will be used as the
counter in the %DO %UNTIL loop.

® Scan &KEYFLD for the i"" word using a
blank as the separator and check to see if
the function results in a null string. Notice

that the first %STR contains a blank space
while the second has no space.

® The previous line @ determined that the
i word exists retrieve it and store it in
&KEYi.

© Increment the counter by 1 in preparation
for the next scan.

® The counter was incremented one time
too many. Reduce the value by one and
save the count in &KEYCNT.

COUNTING OBSERVATIONS

In the following example the macro
%OBSCNT acts like a macro function in
that the macro call resolves to a value that
is the number of observations in the stated
data set.

%macro obscnt(dsn); (1]
%local nobs;
%let nobs=.;

%* Open the data set of interest;
%let dsnid = %sysfunc(open(&dsn)); (2]

%?* If the open was successful get the;
%* number of observations and CLOSE;
%* &dsn;
%if &dsnid %then %do; e

%let nobs =

%sysfunc(attrn(&dsnid,nobs));

%let rc =%sysfunc(close(&dsnid));
%end;
%else %do; @

%put Unable to open &dsn - ;

%put %sysfunc(sysmsg());
%end;

(o~

%* Return the number of observations;
&nobs @
%mend obscnt;

© The user passes the name of the data
set (&DSN) into the macro.

® The selected data set is opened and is
assigned an identification number which is
stored in &DSNID.

® If the data set was found and opened
successfully &DSNID will be greater than O
and this %IF expression will be true.

® The ATTRN function is used to
determine the number of observations in
the data set. The ATTRN function can be
used to make a number of queries on the
data set once it is opened. These include
password and indexing information as well
as the number of variables and the status
of active WHERE clauses.

® The data set should be closed after
retrieving the desired information.

® When the open is unsuccessful we may
want to write a message to the LOG. The
SYSMSG() function returns the reason the
OPEN failed.

@ Since this is the last statement in the
macro, the resolved value of &NOBS will be
effectively 'returned’ to the calling program
and its value will be a period (.) if the data
set was not opened successfully.

The following program creates the data set
A and then calls %0OBSCNT to write the
number of observations to the LOG.

data a;

doi=1to 10;
X=i**;
output;

end;

run;

%put number of obs is %obscnt(a);

The following line is written to the LOG.

number of obs is 10

CONVERTING MACRO TEXT TO lower
CASE

The AUTOCALL macro facility allows

previously written macros to be saved and
reused without including their definition in
the current program. In addition to any
macros that you might write and add to
your own AUTOCALL library, the SAS
System comes supplied with a number of
macros in its own autocall library. These
can be found in your default SASAUTOS
location, under windows this might be:

Isasroot\core\sasmacro

Depending on your operating system and
other SAS products leased additional
autocall macros may be available.

Not only are these macros useful in-and-of-
themselves, but since the code is available
you can modify these macros for your own
purposes or use them as patterns for new
macros.

SAS® Macro Language: Reference, First
Edition, briefly describes these macros (pp.
158-160), and includes their description
with the other macro language elements in
the Macro Language Dictionary, Chapter

13 (pp.161-270). In addition Chapter 7 (pp.

185-187) in the SAS® Guide to Macro
Processing, Version 6 lists many of the
standard SAS System Autocall macros in
one place.

One of the macros that is supplied with the
SAS System AUTOCALL library is
%LOWCASE. The %LOWCASE macro
can be used to convert all upper case
characters to lower case. The macro
accepts a single argument which is
translated using the %INDEX and
%SUBSTR functions. This macro is
demonstrated in the following example.

%let mixed = SAS Macro Language;
%let lower = %lowcase(&mixed);
%put &lower;

The resulting LOG shows the macro

variable &LOWER to be all lower case.

175 %let mixed = SAS Macro Language;
176 %let lower = %lowcase(&mixed);
177 %put &lower;

sas macro language

The code for this macro is interesting
because of the way it finds upper case
characters and then translates them.

%macro lowcase(string);
... documentation removed ...

%local i length c index result;
%let length = %length(&string);
%do i = 1 %to &length;
%let ¢ = %substr(&string,&i,1); (1]
%if &c eq %then %let ¢ = %str();
%else %do;
%let index = (2]
%index(ABCDEFGHIJKLMNOPQRSTUVWXYZ,&c);
%if &index gt 0 %then (3]
Y%let ¢ =
%substr(abcdefghijkimnopqgrstuvwxyz,
&index,1); (4]
%end;
%let result = &result.&c; (5]
%end;
&result O
%mend;

© The i" character in the string of interest
(&STRING) is temporarily stored in the
macro variable &C.

® We then check to see if &C contains an
upper case letter using the %INDEX
function. And the result (position) is stored
in &INDEX.

® If an upper case letter is found (&INDEX
>0), it is converted using the %SUBSTR
function @.

® &C is then appended (converted or not)
onto &RESULT which continues to grow
until the entire string has been checked.

® The macro variable &RESULT contains
the converted string and this will be the
final resolved value of the macro call.

SUMMARY

The SAS macro language allows
developers and users to create flexible
utilities and programs. These can be
further strengthened by taking advantage of
the many features that have been added to
the macro language in recent releases of
the SAS System. Of special interest is the
use of the SASHELP views, the
AUTOCALL libraries, and the ability to
access the DATA step functions through
the use of %SYSFUNC.

TRADEMARK INFORMATION

SAS and SAS Quality Partner are
registered trademarks of SAS Institute, Inc.
in the USA and other countries.

® indicates USA registration.

ABOUT THE AUTHOR

S Art Carpenter’s publications list
Nl includes two chapters in Reporting
PARTNER from the Field, the two books Quick
''''''''''''''' Results with SAS/GRAPH®
Software, and Carpenter's Complete Guide
to the SAS® Macro Language and over two
dozen papers and posters presented at
SUGI, WUSS, and PharmaSUG. Art has
been using SAS since 1976 and has
served as a steering committee chairperson
of both the Southern California SAS User's
Group, SoCalSUG, and the San Diego SAS
Users Group, SANDS; a conference
cochair of the Western Users of SAS
Software regional conference, WUSS; and
Section Chair at the SAS User’s Group
International conference, SUGI.

Artis a SAS Quality Partner™ and through
California Occidental Consultants he
teaches SAS courses and provides contract
SAS programming support nationwide.

AUTHOR CONTACT

Art Carpenter

California Occidental Consultants
PO Box 6199

Oceanside, CA 92058-6199
(760) 945-0613

art@caloxy.com
www.caloxy.com

	Main TOC

