
Paper p74-26

1

Taking Control and Keeping It:
Creating and Using Conditionally Executable SAS® Code

Justina M. Flavin, Pfizer Global Research & Development, La Jolla Laboratories, San Diego, CA
Arthur L. Carpenter, California Occidental Consultants, Oceanside, CA

ABSTRACT
Have you ever wanted to selectively execute chunks of program
code? Do you want to leave debugging statements in your program
for future debugging sessions while preventing their execution
without commenting them manually? Would you like your program to
automatically start at a specified time or perhaps delay the start for
some period of time? Do you want to have error conditions in one
step determine which, if any, of the remaining parts of the program
are to be executed? These concepts and others will be discussed in
the context of controlling how and when all or a portion of a program
runs using conditionally executable SAS code.

KEYWORDS
conditional execution, conditional processing, cancel, abort, endsas,
errorabend

INTRODUCTION
Usually the topic of conditional execution is the discussion of
IF-THEN-ELSE processing within the DATA step. Since these
statements are limited to the DATA step, their use is limited when
one attempts to control the overall flow of the program. Fortunately
there are a number of other types of statements, options, functions,
and programming alternatives that are well suited to controlling how
and when all or a portion of a program executes.

The various tools available fall into three broad areas. These include
the various kinds of actual and effective comments, the use of dates
and times in the decision process, and the termination of all or part
of the job based on some criteria.

As you learn to use the techniques discussed in the following paper,
you will find that they expand very readily to many other types of
programming situations. They will allow you to take charge by
creating flexible code that is conditionally executable.

I. COMMENTS
In addition to the two standard types of comments that are part of the
Base system and the one type of comment in the Macro Language,
there are other ways to use the concept of comments to control what
code is executed. From a practical standpoint, a comment masks
the code so that it will not be compiled and executed. It is also
possible to effectively comment code without using any one of these
styles of comments.

(i) * comment; STYLE COMMENTS
Comment lines are useful for suspending execution of particular
lines of code without deleting the code. To suppress execution of a
single line of code, the statement is preceded with an asterisk.

data vitals;
set db.vitals;
* if patid=1 and visit=1 then wgt=162;
* if patid=9 and visit=3 then wgt=150;

run;

Flexible comments can be implemented by creating a macro variable
that takes on the value of either ‘*’ to turn off code in a program or ‘ ‘
to turn it on. This technique is especially useful for QC and
debugging purposes. In the code below, the macro variable

&CHECKIT could be either local within the program or global for a
batch run of many programs.

%let checkit=*;

data vitals;
set db.vitals;
&checkit if patid=1 and visit=1 then wgt=162;
&checkit if patid=9 and visit=3 then wgt=150;

run;

Entire blocks of code can be commented out one line at a time.

&checkit proc print data=vitals;
&checkit title "Data Fixes";
&checkit where patid in (1, 9);
&checkit run;

(ii) /* comment */ STYLE COMMENTS
This type of comment is useful for suppressing larger chunks of
code. A disadvantage is the inability to embed comments of this
type. Under some operating systems this style comment can be
misinterpreted if the /* is located in the first two columns.

data vitals;
set db.vitals;
/* if patid=1 and visit=1 then wgt=162; */
/* if patid=9 and visit=3 then wgt=150; */

run;

OR

/*
* Print the vitals data for
* patients 1 and 9;
proc print data=vitals;

title "Data Fixes";
where patid in (1, 9);

run;
*/

Again a macro variable such as &CHECKIT can be used to
conditionally execute the section of code. In this case however, it
takes on the value of ‘/’ or ‘ ‘.

%let checkit=/;

&checkit*
* Start of debug section;
* Print the vitals data for
* patients 1 and 9;
proc print data=vitals;

title "Data Fixes";
where patid in (1, 9);

run;
*/
* End of debug section;

(iii) %*comment; MACRO COMMENTS
The macro comment statement behaves much like the asterisk style
comment when used outside of a macro. Since macros are used to

2

generate code, the macro comment will not generate code while the
others will. This is usually not an issue unless macro functions are
being written. All three comment styles can be used within a macro.
Which one is selected depends on the objective of the macro.

In the following example of open code, all three types of comments
achieve the same results.

data vitals;
set db.vitals;
* if patid=1 and visit=1 then wgt=162;
/* if patid=9 and visit=3 then wgt=150;*/
%* if patid=10 and visit=1 then wgt=148;

run;

(iv) UNCALLED MACROS
One of the fastest and easiest ways of preventing execution of a
block of code is by using uncalled macros (Grant, 1994). This
method is especially useful when suppressing execution of code that
contains /* comment */ style comments.

%macro dontdoit;
/* The data set vitals is only printed

when the macro is called.*/
proc print data=vitals;

title "Data Fixes";
where patid in (1, 9);

run;
%mend dontdoit;

Using a macro in this way can slightly increase the use of system
resources because the macro must be compiled regardless of
whether or not it is called.

II. DATE AND TIME CONTROL
There are a number of types of decisions that may need to be made
based on various date, time, and datetime values. These can include
decisions based on the data as well as decisions based on the
actual time of execution.

(i) DATE BRANCHING
A date cutoff can be used to conditionally execute code. In a clinical
trials setting, analyses of an ongoing study may require temporary
hard-code fixes to the data. These may be corrections for
outstanding queries which are not yet resolved and entered into the
data base prior to the snapshot date for an interim analysis.

data vitals;
set db.vitals;
* For interim analysis, hard code values;
* of known data corrections for;
* outstanding queries;
if today () <= "30JUN1999"d then do;

if patid=1 and visit=1 then wgt=162;
if patid=9 and visit=3 then wgt=150;

end;
run;

After the snapshot date (30 June 1999), the values for WGT stored
in DB.VITALS will be used. Since the study is ongoing, these
queries will eventually be resolved and corrected in the data base
and it would be inappropriate to continue to reassign these values
programmatically. By conditionally coding in this manner, a
documented trail of the hard-coded fixes that were applied for the
interim analysis exists. This in turn may eliminate the need for a
separate interim analysis program.

(ii) SLEEP FUNCTION
The sleep function suspends execution of a DATA step for a

specified number of seconds. The maximum sleep time is slightly
over 46 hours. This example suspends execution for 9 hours and 27
minutes.

data _null_;
slept=sleep((60*60*9)+(60*27));

run;

The DATA _NULL_ step can be eliminated by using macro
statements including the %SYSFUNC macro function. The data
step becomes:

%let slept=
sysfunc(sleep(%eval((60*60*9)+(60*27))));

When the system is to wake up at a specific time, the number of
sleep seconds needs to be calculated. The following example will
wake up at 28 minutes and 35 seconds after 5 P.M. on 30th of
October 1998.

data _null_;
now=datetime();
startat='30OCT1998:17:28:35'dt;
sleep=startat-now;
slept=sleep(sleep);

run;

III. STEP AND JOB TERMINATION
It is common to want to control the flow of the individual steps of the
program. This may include the termination of a step or even the job
itself. There are several exit strategies depending on the objective.

(i) ENDSAS
The ENDSAS statement immediately terminates the SAS job or
session. An interactive program that writes output to the OUTPUT
window should not use this statement because the contents of the
OUTPUT window (as well as the LOG & Program Editor windows)
will be lost. However when output is directed to files (as in a batch
program or when using PROC PRINTTO) or when just data sets are
being created, the ENDSAS statement can be used to control job or
session termination.

The entire job is terminated in the following data step if the variable X
is ever less than or equal to zero.

data new;
set old;
lnx=log(x);
if _error_ then endsas;

run;

The ENDSAS statement can also be used between steps when
execution of only a portion of a program is desired.

…some SAS statements…
run;
endsas;
…unexecuted SAS statements…

(ii) STOP
The STOP statement is most often used to prevent infinite loops in
DATA steps that contain a SET statement with a POINT= option.
This statement can also be used to terminate any DATA step.

In the following example, the data set NEW will contain all
observations up to but not including the observation containing the
error (X <= 0). STOP does not set the system error conditions and
the job continues executing with the next step.

3

data new;
set old;
lnx=log(x);
if _error_ then stop;

run;

(iii) ABORT
The ABORT statement is usually used when error conditions are
identified. Like the STOP statement, ABORT also stops the
execution of the current data step. The behavior of this statement
depends to some extent on the operating system and whether the
job is being run under batch or interactive modes.

ABORT writes an error message to the log and sets the system
error conditions. In batch mode, ABORT sets OBS=0 and continues
limited processing. In interactive mode, ABORT acts like STOP.
The ABORT statement can be used with two options, ABEND and
RETURN. With the ABEND option, ABORT writes an error
message to the log and returns control to the host system as an
abnormal termination. The RETURN option is the same as ABEND,
but exits from SAS as a normal termination. For operating systems
that support it, a return code can also be specified with the ABEND
and RETURN options.

In the following DATA step, a bad value of X terminates the job with
an error condition.

data new;
set old;
if x le 0 then abort abend 123;
lnx=log(x);

run;

(iv) RUN CANCEL
The CANCEL option on the RUN statement prevents the current
step from being executed. This is a quick way to prevent code from
executing as opposed to using comments.

In the following example, the PROC PRINT is only executed when
the macro variable &CANCEL is set to a null value.

* set CANCEL to null to
* print data fixes;
%let cancel=cancel;

proc print data=vitals;
title "Data Fixes";
where patid in (1, 9);

run &cancel;

Although the PROC PRINT is not executed when the CANCEL
option is used in the RUN statement, the TITLE statement will be
executed and the title will be reset since the TITLE statement is a
global statement.

(v) ERRORABEND
Like the ABORT and ENDSAS statements, the system option
ERRORABEND terminates the SAS session or job. Since this is an
option, no IF-THEN-ELSE processing is required. As soon as the
first error is encountered the job terminates. This option does not
terminate for data errors, but is primarily directed to syntax errors
and other errors that would otherwise cause the system to go into
syntax check mode.

When ERRORABEND is used in an interactive session, termination
may also eliminate the LOG. Thus any clues as to the reason for the
termination will also be eliminated.

(vi) MACRO %IF-%THEN-%ELSE
Within a macro, complete steps or even groups of steps can be

conditionally executed based on values stored in macro variables.
%IF-%THEN-%ELSE processing in the macro language is similar to
conditional processing within the DATA step. The notable exception,
of course, is that the macro language is not limited to the DATA
step.

In this example, the macro %OBSCNT (Carpenter, 1998) returns
the number of observations in the data set of interest, and the
appropriate data display depends on this number. Since macro %IF-
%THEN-%ELSE processing cannot be used in open code, it must
be used within a macro.

%macro showit(dsn);
%if %obscnt(&dsn) >50 %then %do;

proc summary data=&dsn;
…sas statements not shown…

%end;
%else %do;

proc print data=&dsn;
…sas statements not shown…

%end;
%mend showit;

(vii) &SYSERR
After each DATA step and most PROC steps execute, the
automatic macro variable &SYSERR is loaded with the error status
of that step. Steps which complete successfully will result in
&SYSERR having a value of zero. Other values of &SYSERR may
depend on the step and the type of error within the step.

In the following example, the copy will be unsuccessful if the user
cannot get read access to the incoming data sets. Since this is
critical to the process, the job is terminated with an ABORT.

%macro chkcopy;
* Copy the current version of
* the COMBINE files
* to COMBTEMP;
proc datasets memtype=data;

copy in=combine out=combtemp;
quit;
%if &syserr ge 5 %then %do;

data _null_;
put '*** combine copy failure ***';
put 'One of the data sets’;
put 'may be in use.';
abort abend;

run;
%end;

%mend chkcopy;

CONCLUSION
There are a number of ways to control how and when your SAS
program executes. You can control the process both within and
across steps. The major groupings of the topics of interest include
using comments, execution based on date and time, and step and
job termination.

Several levels of control are available. These include DATA step
specific statements, global statements, system options, automatic
macro variables, and macro statements

Comments can be used both within and across steps. Macros that
are never called can act as comments. Date and time values can be
used for conditional decision making within a DATA step as well as
to determine when a job is to start or stop. There are a variety of
statements and options that can be used to conditionally terminate a
specific step or even the whole job. These determinations can be
based on the data or on error conditions found within the program.
The power and flexibility of the SAS System allow you, the

4

programmer, to take control of the flow of the entire program and
conditional execution will no longer imply DATA step IF-THEN-
ELSE processing.

REFERENCES
Carpenter, Arthur L., Carpenter’s Complete Guide to the SAS
Macro Language, Cary, NC: SAS Institute Inc., 1998, 242 pp.

Grant, Paul, 1994, “The ‘SKIP’ Statement”, Proceedings of the
Second Annual Conference of the Western Users of SAS Software,
Cary, NC: SAS Institute Inc., pp. 87-88.

TRADEMARK INFORMATION
SAS, SAS Certified Professional, and SAS Quality Partner are
registered trademarks of SAS Institute Inc. in the USA and other
countries.
® indicates USA registration.

CONTACT INFORMATION
Justina M. Flavin
Pfizer Global Research & Development, La Jolla Laboratories
11085 Torreyana Road
San Diego, CA 92121
(858) 622-7376
justina.flavin@agouron.com

Justina M. Flavin is a Senior Clinical Programmer/Analyst at Pfizer
Global Research & Development, La Jolla Laboratories in San
Diego, California and served as Conference Chair of PharmaSUG
’99. She has been employed as a SAS programmer in the
pharmaceutical industry for nine years. Other SAS experience
includes developing SPC charts and graphs for manufacturing
processes in the aerospace industry, and performing data analyses
for research projects in the medical, psychological, and political
fields. She has a B.A. in Applied Mathematics from the University of
California, San Diego.

Art Carpenter
California Occidental Consultants
PO Box 6199
Oceanside, CA 92058-6199
(760) 945-0613
art@caloxy.com
www.caloxy.com

Art Carpenter’s publications list includes two chapters in Reporting
from the Field, three books and over three dozen papers and posters
presented at SUGI, WUSS, and PharmaSUG. Art has been using
SAS since 1976 and has served in leadership roles in various local,
regional, and national user groups.

Art is a SAS Certified ProfessionalTM. Through California Occidental
Consultants he teaches SAS courses and provides contract SAS
programming support nationwide.

