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ABSTRACT 
 
Survival analyses based on a data collection process which the 
researcher has little control over are often plagued by problems 
of missing data. Deleting cases with any missing data will 
result in information loss and usually results in bias, while 
many analytic procedures that retain this information in some 
form underestimate the resulting uncertainty in parameter 
estimates and other output. SAS  Version 8 includes two new 
procedures that allow the researcher to generate "complete" 
data sets from incomplete data by multiple imputation and to 
analyze the resulting data in ways which adequately account for 
the uncertainty involved. This paper presents suggestions for 
optimal use of PROC MI to perform such multiple imputation 
and PROC MIANALYZE to conduct various statistical 
analyses of modeling output, in this case from PROC PHREG, 
including design of control macros, structure of multiply 
imputed datasets, generation of binary from non-binary 
categorical variables, and options for presentation of results.  
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INTRODUCTION 
 
MI and MIANALYZE are new procedures in SAS Version 8 
whose usage is in the process of being established, especially 
when using large data sets, multiple models, or different forms 
of output and presentation of results.  As suggested by the 
flowchart below, their use involves multiple stages of analysis: 
first creating several �complete� datasets by multiple 
imputation using MI, then performing individual analysis 
PROC runs (in our case, PHREG) on each of the individual 
�complete� (imputed) data sets, followed by combining the 
output from the individual analysis runs via MIANALYZE to 
produce final parameter estimates and other model results.  
While in general the number of imputed data sets required for 
this process is small (we created m=5 �complete� data sets, 
which is quite often sufficient for efficient model estimates) the 
added complexity of the multistage analysis puts a premium on 
prior planning and careful design to maximize program 
performance as well as accessibility and manipulability of 
results. 
 
Modeling 
 
We used proportional hazards models to examine whether 
patients in the Veterans Administration who had received VA 
care for HIV between January 1, 1993, and June 30, 2001 
showed a higher risk for certain adverse side effects if they 
received some form of highly-active antiretroviral therapy 
(HAART) compared to those under VA care for HIV in the 
same period who did not receive such treatment.  We examined 
various adverse events, such as all-cause mortality, mortality 
due to cardiovascular or cerebrovascular disease, and inpatient 

admissions for cardiovascular or cerebrovascular disease.  For 
each such outcome event, we examined the effect of exposure 
to nucleoside analogs, non-nucleoside reverse transcriptase 
inhibitors, and protease inhibitors singly and in combination, 
both in the form of being ever exposed and of amount of 
cumulative exposure.  In all models we adjusted for various 
patient characteristics; in some models we also included 
covariates to partially adjust for possible selection effects, 
whereby sicker patients might be more likely to receive the 
treatment in question.  We therefore had a large number of 
models to analyze, together with a strong possibility that 
further models would suggest themselves as the analyses 
progressed.  
 
Our survival analysis programming involved adaptation and 
development of a set of SAS macros developed at the Mayo 
Clinic in Rochester, Minnesota, under the leadership of Terry 
Therneau and Patricia Grambsch, and maintained by clinic 
staff.  They have been thoroughly tested and used there, but the 
Mayo Clinic does not warrant their use in any way.  They are 
discussed in Therneau and Grambsch�s book Modeling Survival 
Data: Extending the Cox Model,and are available at 
www.mayo.edu/hsr/people/therneau/book/book.html. They 
include programs to calculate Kaplan-Meier survival curves 
together with standard errors, confidence limits, and median 
survival times, with numerous options to print and plot results; 
calculate logrank statistics; generate robust variance estimates; 
and examine functional form.  Some of their macros can 
accommodate data that is in counting process format, which 
allows left-truncated survival or time-dependent calculations 
where a person can change state after their starting time. Their 
schoen macro, which uses scaled Schoenfeld residuals to 
produce plots and tests of proportional hazards assumptions, 
does not, as provided, permit data in counting process format to 
be used, and thus one of our adaptations was to expand this 
macro to accommodate our use of data in counting process 
format. 
 
Among the covariates in all our models were four with missing 
values: age at first VA care for HIV (4 cases out of 36,766 or 
0.01%), baseline severity of illness (181 cases or 0.49%), race 
(2684 cases or 7.30%), and risk group at first VA care for HIV 
(4632 cases or 12.60%).  These totaled to slightly less than 1% 
of all entries in the various 36,766 x 22 to 36,766 x 27 data 
matrices used in our modeling. 
 
Our decision to employ multiple imputation required a multi-
stage analysis process, of which one portion needed to be 
iterated for each of the m=5 completed datasets used for each 
of our models. In our flowchart, the entire portion in the solid 
box is run by the analysis control program once per model. The 
sub-portion (within the smaller solid box) is run once per 
iteration, i.e., once for each of the m complete data sets for each 
distinct model.  



MODEL SPECIFICATION USING A 
CONTROL FILE 
 
Due to the large number of outcome events and types of 
exposure of interest, as well as the various combinations of 
covariates, the number of models that had to be processed 
would have been unmanageable without some type of control 
system.  We chose to build a SAS data table that contained one 
observation (row) for each model of interest.  The columns in 
this control file contained sufficient information to completely 
specify, either directly or indirectly all aspects of the individual 
model. 
 
During processing, the control file was read and macro variable 
arrays (lists of macro variables in the form of &&VAR&I) 
were generated following the techniques described in Carpenter 
and Smith (2002a).  Once the specification of a given model 
was contained within these arrays, the analysis programs 
described below were executed for each model. 
 
The models themselves were grouped according to various 
commonalities, such as covariates, transformations, event 
types, etc.  Each model was assigned a unique control number, 
which reflected this association.  The control number was also 
used to manage the thousands of graphs, charts, and tables that 
were generated as part of the analysis process.  Carpenter and 
Smith (2002b) describe the output management process. 
 
DATA CREATION 
 
Variable creation: binary variables 

 
The imputation process requires specification of a model with 
which you can derive imputed values from the observed values 
of a number of other variables in the original data set. For a 
given variable, the imputation model should ideally include all 
those variables that are potentially related to that variable, or 
potentially related to the missingness of that variable. But 
considerations of size or running time may put a premium on as 
parsimonious an imputation model as possible.  Thus if two 
variables A and B are not only each related to variable C, but 
highly correlated with each other, then only having one of A or 
B in the imputation model for imputing values for C may 
suffice. 
 
Unless the observed (non-missing) component of the data used 
in the imputation model has, under some ordering of the 
variables, a monotone structure, (whereby if the ith variable for 
a given observation has a missing value then so does any jth 
variable for that observation if j > i), then to use MI one must 
assume multivariate normality for data. In reality MI can 
accommodate some departure from this assumption as long as 
it is only a limited one.  (see Schafer, pp. 147-148, 211-218 
(sect. 6.4, which contains a simulation study examining the 
performance of various estimators using a normal model for 
imputation of what was more plausibly non-normal data))  
 
In Version 8.2 MI features a TRANSFORM statement, which 
can be used to convert certain non-normal variables to 
normality, or approximate normality, via Box-Cox, 
exponential, logarithmic, logit, or power transformations prior 
to imputation and then reverse-transform them afterward.  But 
it cannot transform categorical variables to normality.  Thus in 

either Version 8.1 or 8.2, to be able to impute missing values to 
any categorical non-binary variable in the dataset so as to 
conform to the normality assumption, such a variable must be 
replaced by a corresponding set of binary dummy variables 
with 0-1 valuesThese dummy variables will then each be 
treated as individual normal variates for imputation purposes. 
  
In treating each of these separate dummy binary variables as a 
normal variate, MI will impute a continuous value.  So for a set 
of dummies corresponding to a single categorical covariate in 
the original dataset, you must program a routine to assign a 1 to 
one of the dummies and 0s to the other dummies based on their 
imputed values in that iteration (e.g., see Allison, pp 39-40). In 
the last stage of each round of the imputation process, the set of 
dummy variables can be replaced by the original categorical 
variable, which will have a 1 assigned to the category whose 
dummy received the 1 in that round.   
                    
Checking The Imputation Process 
 
In imputing values, MI utilizes a Markov Chain Monte Carlo 
process designed to result in generating independent draws 
from the Bayesian posterior distribution of the missing values 
given the observed data and an assumed prior. For these draws 
to be representative of the posterior distribution the process 
must be run until it becomes stationary, but, as mentioned in 
MI documentation, verification of convergence of this iterative 
MCMC process to a stationary distribution is non-trivial, and is 
not implemented in the MI procedure itself. You can, however, 
create, for each variable to be imputed, a plot of the value 
imputed to the variable in that iteration versus the iteration 
index to check for time trends in the iterated values. As long as 
time trends are apparent, stationarity is unlikely to have been 
reached. Even with no such trends apparent, however, 
stationarity cannot be guaranteed, especially for data with high 
percentages of missing values.  Thus it is valuable to perform 
other checks. You can, for example, check whether the 
correlations among the iterates in a single imputation run for a 
given variable have disappeared with a large enough lag, by 
plotting correlations for the first, say, 15 or 20 lags. (For 
suggestions on assessing convergence see Shafer, sect 4.4, pp. 
118-136.)  
 
The following SAS code excerpt indicates how GPLOT and 
AUTOREG can be used in this way, when using Version 8.1, 
as we did. (Cf. Example 6 in the MI documentation in Version 
8.1.) In Version 8.2, PROC MI itself can produce such plots 
using the TIMEPLOT option in the MCMC statement in place 
of using PROC GPLOT, and using the ACFPLOT option in the 
MCMC statement instead of having to call PROC AUTOREG 
(although ACFPLOT does not furnish Durbin-Watson 
statistics, which we produced with the DWPROB option in the 
MODEL statement in PROC AUTOREG). 
 
* create a separate plot & analysis  
* for each of the missing vars; 
%do m = 1 %to &allmisscnt; 
 
  * define the symbols used in the plots;  
  symbol1 v=triangle c=black i=none; 
  symbol2 v=star c=blue i=none; 
  symbol3 v=square c=red i=none; 
  symbol4 v=circle c=brown i=none; 
  symbol5 v=plus c=green i=none ; 



  * plot of iteration number vs each  
  * var with missing values; 
  title1 h=1.5 "Imputation: MEAN of 
&&allmiss&m vs Iteration.  RunID: &runid"; 
  proc gplot 
data=work.outmean1(where=(_type_='MEAN')); 
   plot  
&&allmiss&m*_Iteration_ = _Imputation_ /  
         href = 0  
         name = "&runid.mn&m";            
    label &&allmiss&m = ' '; 
    run ; 
  title1 "AutoReg of Imputed Data. 
Dependent Variable: MEAN &&allmiss&m...  
RunID: &runid"; 
  proc autoreg data=work.outmean2     
       (where=(_type_='MEAN')) ; 
    by _imputation_;   
    model &&allmiss&m = /nlag=18 dwprob;        
    run ;  
. . . 
%end; 

                           
Data set creation 
 
There are likely to be components of your various data creation 
and analysis programs (macros) that will contain differences in 
the way they handle those covariates with some imputed values 
versus those without any imputed values.  As a result you may 
want to create two separate macro variables, one containing a 
list of the imputed covariates, the other containing a list of the 
nonimputed ones, which could then be used, for example, to 
create a macro variable whose value is the list of names of the 
imputed covariates.   
 
Using the OUT= option in the PROC MI statement creates a 
SAS data set which contains all the variables in the input data 
set with missing values replaced by imputed values.  Each 
observation in this output data set also contains an additional 
variable, _Imputation_, whose value identifies which of the m 
imputations produced the given observation.   
 
Depending on the size of such a data set and the proportion of 
variables with missing values, you may want to consider 
various options for storage of your data.  For example, all those 
covariates without missing values might be kept in one data set 
with an ID variable which would allow you to merge each 
observation in this data set with the corresponding m 
observations in a separate data set containing only those 
covariates that had to have some values imputed.  You will 
thereby save the space that m-1 copies of the data set with the 
variables without missing values would occupy.  Each required 
merge could then be run immediately before the combined data 
is input to PHREG.  
 
The data that is actually input to PHREG can itself be 
structured in various ways. One choice would be to construct a 
separate dataset for each of the m runs of PHREG for a given 
model.  Alternatively, one could create one data set containing 
all m values for each imputed variable, and then simply pull out 
the ith value of each imputed covariate for the ith of the m runs 
for that model.  To run our analyses, we chose the most 
compact form: to create a single data set for each model with 
all m versions of the imputed values for any imputed covariate 
in the same observation, indexed so that we could pull out the 

ith value for each imputed variable for the ith run for that model 
of  PHREG. So for our risk variable, for instance, a given 
observation contains values for RISK_I1, RISK_I2, RISK_I3, 
RISK_I4, and RISK_I5.  From this observation the first run for 
a given model uses the values of the non-imputed covariates 
together with the RISK_I1 value for risk, the RACE_I1 value 
for race, the SEVERITY_I1 value for severity, etc. 
 
DATA EXPLORATION 
 
Using multiple imputation raises a question as to how any 
exploratory data analysis (EDA) conducted prior to or separate 
from statistical modeling, e.g., examining frequencies, 
crosstabs, or correlations, is to be done. The multiple 
imputation process is not intended to provide estimates per se 
of missing values but rather to produce a set (a random sample) 
of values whose variability captures the uncertainty that exists 
with respect to missing data values. No single one of the m 
imputed data sets is the �real� data, and while MIANALYZE 
combines analysis output parameters, for example, it is not 
meant to combine data values themselves. For any variable 
with continuous values, one could combine the m values for a 
given observation by taking the mean, but such a �combining� 
technique would not work for those variables with ordinal or 
categorical values.  
 
One option for EDA is to select one of the m imputed data sets 
to use; differences in results from use of another of the m data 
sets are likely to be small if the percentages of missing data in 
the original data set were small. This is the choice we made to 
produce Kaplan-Meier curves, for instance. But the larger the 
percentages of missing data are, the more advisable it may be 
to conduct EDA on each of the imputed data sets and examine 
the variations from each of the m outputs to the others.  
 
ANALYSIS 
 
With m runs of PHREG for each model, running time can 
become much more of a consideration than otherwise, 
especially if a number of different models are being examined.  
We recommend careful consideration prior to running PHREG 
or any other analysis procedure(s) of exactly what output might 
be wanted. Wald tests for individual coefficients or subsets of 
coefficients, for example, are straightforward to program into 
an analysis run using the TEST statement in PHREG. But if 
you decide after PHREG has been run that you need to conduct 
such tests, substantial programming may be required, since you 
will need to specify the proper variance-covariance matrix and 
then pull out certain values from it to calculate the Wald test 
statistic, which can require extensive manipulations with 
indices and variable names to succeed. 
 
OUTPUT MANIPULATION AND USE 
 
We also suggest you consider carefully before running your 
analyses whether you should save direct PHREG or other SAS 
analysis PROC output, e.g, model diagnostics (in our case, such 
things as scaled Schoenfeld residuals) in addition to PHREG 
output datasets and MIANALYZE output. If, for example, you 
anticipate that questions of model adequacy might arise 
subsequently, then direct output from the m individual runs for 
each model may need to be saved. You could possibly save 
output from only one of the m PHREG runs if, say, only 



general questions about model adequacy were expected. Again, 
storage structure should be determined beforehand with an eye 
on questions of network access for potential users, storage 
capacity, ease of transfer or file reclassification, and 
accommodation to creation of additional output files and 
directories--which includes naming and tracking of models.  
We suggest you develop from the start a model output indexing 
system that is capable of expansion, particularly if it is likely 
that modifications to models may be made after or even during 
the process of running initial models. 
 
The parameter estimates resulting from the individual runs of 
PHREG on each of the m individual imputed data sets will be 
combined by MIANALYZE, which computes a mean and 
appropriate variance estimate as a function of the within and 
between variance estimates for the parameter in question.  
MIANALYZE creates a data Table named PARMEST, for 
example, to hold these resulting parameter estimates.  For 
example, output is routed to SAS data sets with the statement 
 
ods output parmest=libname.dataname; 
 
If multiple models (e.g., with different outcome variables or 
covariates) are being run from which you want to package 
together all the resulting parameter estimates that 
MIANALYZE produces for each such model, one option 
would be to run a loop indexed by model version number with 
a call to MIANALYZE inside the loop and then saving the 
estimates all to the same overall data set by creating a new data 
set after the loop.  The following is an example for hazard 
estimates rather than the parameter estimates themselves, in 
which the hazard data set has been created using the ODS 
PARMEST= option with the MIANALYZE procedure: 
 
%if  %existfunc(projdata.hazardEST)  %then  
%do; 
data projdata.hazardEST; 
  modify projdata.hazardest 
         hazard; 
... 
  run; 
%end; 
%else  %do: 
  data projdata.hazardEST; 
  set hazard; 
... 
  run; 
%end; 

 
A macro similar to %EXISTFUNC is discussed in Carpenter 
(2002). 
 
For displaying your final output from MIANALYZE the 
advantages of using HTML format include the ability to 
package it attractively and post it easily. But you should 
remember that in doing so you would not be able to extract 
specific parameter or other output values from HTML files.  
Therefore may want to send such output to EXCEL 
spreadsheets, for example, instead of or in addition to your 
HTML packaging.  If it is anticipated that specific calculations 
or manipulations of some of these values will need to be done 
subsequently, then you may want to create SAS data sets. 
These data sets can then function as input for the calculation of 
such further results as hazard ratios, hazard ratio plots, odds 
ratios, or particular confidence intervals. 
 

CONCLUSION 
 
The MI and MIANALYZE procedure represent powerful tools 
to handle data with missing values. Their use, however, can add 
to the complexity of your programming, via multiple analysis 
data sets, repeated analyses, and a two-stage structure to the 
overall analysis of PHREG or other analysis procedures 
followed by MIANALYZE. This puts a premium on planning 
beforehand for modification, expansion, well-designed storage 
and access, and optimal presentation.  Such planning and 
flexibility is greatly facilitated by the use of control files and 
SAS macro language. 
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