
1

Advanced PROC REPORT:
Doing More in the Compute Block

Arthur L. Carpenter
California Occidental Consultants

ABSTRACT
One of the unique features of the REPORT procedure is the Compute Block. This PROC step tool allows the use of most
DATA step statements, logic, and functions, and through the use of the compute block you can modify existing columns,
create new columns, write text, and more! This provides the SAS programmer a level of control and flexibility that is
unavailable in virtually all other procedures. Along with this flexibility comes complexity and this complexity often thwarts
us as we try to write increasingly interesting compute blocks.

The complexity of the compute block includes a number of column identification and timing issues that can confound the
PROC REPORT user. Of course to make matters even more interesting, there can be multiple compute blocks that can
interact with each other and these can execute for different portions of the report table.

This tutorial will discuss the essential elements of the compute block, its relationship to the processing phases, and how it
interacts with temporary variables and other compute blocks. We will discuss timing issues and naming conventions
through a series of examples.

KEYWORDS
PROC REPORT, Compute Block, Report Row Phase, Temporary variables

REPORT PHASES REVIEW

Evaluation Phase
REPORT begins by evaluating all of the REPORT step statements. If any COMPUTE blocks are present the SAS
language elements and LINE statements are set aside for later.

Setup Phase
Next, after the statements have been evaluated, the Setup Phase uses the MEANS/SUMMARY engine to sort the input
data for ORDER and GROUP variables and computes any summarizations. When summarizations or statistics are
calculated, the results are held in the computed summary information which is stored in memory.

Report Row Phase
In this phase, REPORT builds each report row using data from the input data set and/or, when needed, the computed
summary information. If any COMPUTE blocks are present they are executed during this phase. REPORT sends each
completed row (one row at a time) to all the ODS destinations (LISTING, PDF, etc.) that are currently open.

2

REPORT ITEM NAMING RULES

When coding within the compute block, report items will need to be addressed. How they are addressed or named
depends on what the report item is and how it is being used. There are four different ways of naming report items within a
compute block.

Explicitly by Name
The variable name can be used directly when the variable has a define type of GROUP, ORDER, COMPUTED, or
DISPLAY. Temporary variables, variables that are created and only used in a compute block, are also always addressed
directly by variable name.

The REPORT step also creates an automatic temporary variable named _BREAK_. This variable is addressed directly
and is available during the execution of the compute block.

Using a Compound Name
Compound variable names are needed, when a variable with an ANALYSIS define type has been used to calculate a
statistic. The compound name is a combination of the variable name and the statistic that it has been used to calculate.
The general form is variablename.statistic, and an example of a compound name might be:

3

wt.mean

By Specifying an Alias
An alias can be specified in the COLUMN statement when you want to use a single analysis variable in more than one way
- generally to calculate more than one statistic. When used in a compute block, aliases are named explicitly. The following
COLUMN statement generates a series of aliases for the HT analysis variable.

columns region ht
ht=htmin ht=htmax

 ht=htmean ht=htmedian;

In the compute block the alias is addressed directly as in:

compute after;
 line @3 'Minimum height is ' htmin 6.1;
endcomp;

Indirectly Using the Absolute Column Number
Sometimes as the report is constructed a given column may not have a specific name. This is especially the case when a
variable, with the define type of ACROSS, creates a series of columns. These, and indeed any column in the report, can
be referenced by using the column number as an indirect column reference. This pseudo variable name is always of the
form

Cxx

where the xx is the column number as read from left to right on the report. The column count includes any columns that
will ultimately not be printed e.g. those columns defined with NOPRINT or NOZERO.

More specific information and examples of the naming of report items in the compute block can be found in Carpenter
(2006a).

USING BEFORE AND AFTER

The BEFORE and AFTER timing location options can be used on the compute statement to determine when the compute
block is to be executed. They can be relative to both grouping variables and to the overall report.

In the following example we want to calculate the percentage of patients falling within selected weight groups both by and
across gender. We want to generate the following report using the data from a small clinical study.

4

Extending Compute Blocks
Using BEFORE and AFTER

 Percent Percent
 Gender Weight N by Sex Total
 Female < 100 2 6% 3%
 100-< 200 29 91% 36%
 200-< 300 1 3% 1%
 == ======== ========
 32 100% 40%

 Male 100-< 200 37 77% 46%
 200-< 300 11 23% 14%
 == ======== ========
 48 100% 60%

 == ======== ========
 80 . 100%

Percentage
calculations are
always a bit more
interesting since they
require a current
value and a group
total.

This example has two
types of percentage
calculations and
therefore requires two
types of totals.

In the clinics data the patient weight is to the nearest tenth of a pound. We would like to consolidate the patients into 100
pound groups and we will use the format PNDS. to define the groups of interest.

proc format;
 value pnds
 low-<100 = ' < 100'
 100-<200 = '100-< 200'
 200-<300 = '200-< 300'
 300-high = '300 and over';

value $gender
 'M'='Male'
 'F'='Female';

 run;

title1 'Extending Compute Blocks';
title2 'Using BEFORE and AFTER';

In each of the compute blocks in the following REPORT step notice the usage of the variable WTN. It has a very different
meaning in each of the compute blocks. The REPORT step is:

proc report data=rptdata.clinics nowd
 out=outpct split='*';
 column sex wt wt=wtn percnt tpercnt;
 define sex / group format=$gender6. 'Gender' ;
 define wt / group format=pnds. 'Weight' order=formatted;
 define wtn / analysis format=2. n 'N'; ì
 define percnt / computed format=percent8. í

 'Percent*by Sex';
 define tpercnt / computed format=percent8. î

 'Percent*Total';
 compute before; ï
 * Total number of patients;
 totcount = wtn;
 endcomp;

 compute before sex; ð
 * Total number within gender group;
 count = wtn;

5

 endcomp;

 compute percnt; ñ
 * percent within weight group;
 percnt= wtn/count;
 endcomp;

 compute tpercnt; ò
 * Total percent within weight group;
 tpercnt= wtn/totcount;
 endcomp;

 * Percent count for summary after SEX;
 compute after sex; ó
 percnt= wtn/count;
 tpercnt= wtn/totcount;
 endcomp;

 break after sex / suppress summarize dol skip;

 * Percent count for summary after the report
 * (across SEX);
 compute after; ô
 percnt= .;
 tpercnt= wtn/totcount;
 endcomp;

 rbreak after / summarize dol skip;
 run;

ì The alias WTN will be used to collect the number of patients with non-missing values of WT (which is being used as a
grouping variable).

í PERCNT is a computed variable that will hold the percentage of patients within each gender and weight group.

îThe report item TPERCNT is a computed variable that will hold the percent of patients across genders.

ï During the execution of this compute block, WTN contains the total number of non-missing values of WT (assuming that
there are no missing values for WT, this count is also the total number of patients). In order to retain this total, it is saved
in the temporary variable TOTCOUNT. This will be the denominator for all percentage calculations based on the overall
patient count. This compute block will only be executed once for the entire report.

ð During the execution of this compute block, WTN contains the number of non-missing values of WT within a gender.
BEFORE the value of SEX changes, the number of patients with a weight is saved in the temporary variable COUNT.
Since the value of a temporary variable is automatically retained, this value of COUNT will be available for all the detail
lines associated with this value of SEX. COUNT becomes the denominator for all percentage calculations within a gender.
This compute block will execute only once for each value of SEX.

ñ The value of PERCNT is calculated for the detail lines of the report. During the execution of this compute block, WTN
contains the number of non-missing values of WT within a specific weight group. The assignment statement in this
compute block calculates a computed variable (PERCNT) using the temporary variable COUNT and a report item variable
(WTN). This block is also executed for summary rows.

ò The value of TPERCNT is calculated during the execution of this compute block for the detail lines of the report.
Although PERCNT and TPERCNT are both calculated for each detail line both the PERCNT and the TPERCNT compute
blocks must appear. This is because for detail lines, the report item’s computed value is only transferred to the report row
from its own compute block. During the execution of this compute block, WTN contains the number of non-missing values
of WT within a specific weight group. This block is also executed for summary rows.

ó This compute block and the BREAK statement both have the location of AFTER SEX, consequently here the values for

6

Extending Compute Blocks
Using BEFORE and AFTER
Final Report Rows

Obs sex wt wtn percnt tpercnt _BREAK_

 1 . 80 . . _RBREAK_ ï
 2 F . 32 . 0.4000 sex ð
 3 F 98 2 0.06250 0.0250 ñ ò
 4 F 105 29 0.90625 0.3625 ñ ò
 5 F 201 1 0.03125 0.0125 ñ ò
 6 F . 32 1.00000 0.4000 sex ó
 7 M . 48 1.50000 0.6000 sex ð
 8 M 105 37 0.77083 0.4625 ñ ò
 9 M 201 11 0.22917 0.1375 ñ ò
 10 M . 48 1.00000 0.6000 sex ó
 11 . 80 . 1.0000 _RBREAK_ ô

PERCNT and TPERCNT are calculated only for the group summaries for each gender. During the execution of this
compute block, WTN contains the number of non-missing values of WT within this value of gender. Because of the
presence of the compute blocks at ñ and ò this compute block is redundant in this step.

ô Since no variable is on this COMPUTE statement, it will be executed after the entire report along with the RBREAK
statement. It is at this time that the values for PERCNT and TPERCNT are calculated for the final summary line of the
report. During the execution of this compute block, WTN contains the number of non-missing values of WT across the
entire table. Of course WTN and TOTCOUNT will have the same value at this point. This compute block will be executed
only once, at the end of the report.

Sometimes it can help to understand the relationship of the compute blocks and the report item variables by looking at the
data set created using the OUT= option.

CREATING COMPUTED CHARACTER VARIABLES

When creating a computed character variable its attributes must be declared. To do this the COMPUTE statement
supports the CHARACTER and LENGTH options. The CHARACTER option can be abbreviated as CHAR and the
following example creates a computed variable that contains the concatenated first and last names of the patient ì.

title1 'Extending Compute Blocks';
title2 'Defining Character Columns';

proc report data=rptdata.clinics(where=(region='2'))
 nowd split='*';
 column lname fname name wt ht edu;
 define lname / order noprint;
 define fname / order noprint;
 define name / computed 'Patient Name';
 define wt / display 'Weight';
 define ht / display 'Height';
 define edu / display 'Years*Ed.';

 compute name / character length=17; ì
 name = trim(fname) || ' ' ||lname;
 endcomp;
 run;

7

Extending Compute Blocks
Defining Character Columns

 Years
 Patient Name Weight Height Ed.
 Teddy Atwood 105 64 14
 Linda Haddock 105 64 14
 Samuel Harbor 105 64 14
 105 64 14 í
 Marcia Ingram 115 64 14
 Zac Leader 105 64 14
 Sandra Little 109 63 12
 Margot Long 115 64 14
 Linda Maxwell 105 64 14
 Liz Saunders 109 63 12

The attributes of the
computed variable
NAME have been
specified through the
use of options on the
compute statement.

ì The computed variable NAME is declared to be CHARACTER with a length of 17. The default variable type is numeric
and the default length for character variables is 9.

í Samuel Harbor has two visits, and since last and first names are order variables, the compute block is only executed for
the first occurrence, consequently the computed variable NAME is missing for the second occurrence.

When you specify a character format using the FORMAT= option on the DEFINE statement, you must also use one or
both of these two COMPUTE statement options. If both a format and a LENGTH= option are present, the length will be
taken from the LENGTH option.

CHANGING GROUPING VARIABLE VALUES ON SUMMARY LINES

The Problem

In the following example regions have been used to form groups based on the user defined format $REGNAME ì. In
addition a request for an overall summary line has been made through the use of the RBREAK statement í. Remember
that SUPPRESS is not used with the RBREAK statement, as there is no value of the grouping variable to suppress î.

proc format;
 value $regname ì
 '1','2','3' = 'No. East'
 '4' = 'So. East'
 '5' - '8' = 'Mid West'
 '9', '10' = 'Western';
 run;

title1 'Extending Compute Blocks';
title2 'RBREAK Does not Create Summary Text';

proc report data=rptdata.clinics nowd split='*';
 column region edu ht wt;

 define region / group width=10 'Region' ì
 format=$regname. order=formatted;
 define edu / analysis mean 'Years of*Education'
 format=9.2 ;
 define ht / analysis mean format=6.2 'Height';
 define wt / analysis mean format=6.2 'Weight';

 rbreak after / summarize dol; í
 run;

8

Extending Compute Blocks
RBREAK Does not Create Summary Text

 Years of
 Region Education Height Weight
 Mid West 14.31 66.85 172.54
 No. East 13.25 67.33 138.17
 So. East 15.00 69.00 159.14
 Western 12.63 67.25 182.00
 ========= ====== ======
 î 13.78 67.45 161.78

By default there is no text
î under the grouping
variable for the RBREAK
summary line.

Extending Compute Blocks
Using COMPUTE to Supply Summary Text

 Years of
 Region Education Height Weight
 Mid West 14.31 66.85 172.54
 No. East 13.25 67.33 138.17
 So. East 15.00 69.00 159.14
 Western 12.63 67.25 182.00
 ========== ========= ====== ======
 Co 13.78 67.45 161.78

Because REGION is a
character variable of
length 2, the text
‘Combined’ has become
truncated to ‘Co’.

The resulting output table shows that for the summary line, the REGION is blank. î

The examples that follow show some techniques that can be used to supply text for this and other summary rows.

Specifying Text in a Compute Block

This is simplest method for adding text to the summary line, however it does have limitations. Add the following compute
block to change the value of REGION from MISSING.

 * Text for the report summary line;
 compute after;
 region = 'Combined';
 endcomp;

After adding the compute block, the following report is generated.

A problem can also occur if you try to assign a value of the wrong type to the grouping variable in the compute block . You
cannot assign text to a numeric variable or numbers to a character variable.

Using a Formatted Value

By including an ‘other’ line in the format definition, we can accommodate the summary line which otherwise has a missing
value ì. In order to make this work we must change the value of REGION from missing í on the summary line.

proc format;
 value $regname
 '1','2','3' = 'No. East'
 '4' = 'So. East'
 '5' - '8' = 'Mid West'

9

‘Combined’ is not
truncated here, because it
is actually a formatted
value.

Extending Compute Blocks
Using a Format to Rename Summary Text

 Years of
 Region Education Height Weight
 Mid West 14.31 66.85 172.54
 No. East 13.25 67.33 138.17
 So. East 15.00 69.00 159.14
 Western 12.63 67.25 182.00
 ========== ========= ====== ======
 Combined 13.78 67.45 161.78

 '9', '10' = 'Western'
 other = 'Combined'; ì
 run;

title1 'Extending Compute Blocks';
title2 'Using a Format to Rename Summary Text';

proc report data=rptdata.clinics nowd split='*';
 column region edu ht wt;
 define region / group width=10 'Region'
 format=$regname. order=formatted;
 define edu / analysis mean 'Years of*Education'
 format=9.2 ;
 define ht / analysis mean format=6.2 'Height';
 define wt / analysis mean format=6.2 'Weight';
 rbreak after / summarize dol;
 * Text for the report summary line;
 compute after;
 region = 'x'; í
 endcomp;
 run;

ì Values other than missing and the 10 region numbers will be displayed as ‘Combined’.

í REGION is assigned a value other than missing or one of the acceptable region numbers.

In the DATA step a missing value will be picked up by the OTHER in the format definition. That will not be the case in the
REPORT step when you are formatting a value on a summary line. This means that you will have to assign a non-missing
value to REGION to make this technique work.

Creating a Dummy Column

Another approach to adding the text is to build a computed column specifically designed to hold the text of interest. In this
example a new column, REGNAME, has been added to the COLUMN statement ì.

proc report data=rptdata.clinics nowd split='*';
 column region regname edu ht wt; ì

 define region / group noprint format=$regname.; í
 define regname / computed 'Region'; î
 define edu / analysis mean 'Years of*Education'
 format=9.2 ;
 define ht / analysis mean format=6.2 'Height';
 define wt / analysis mean format=6.2 'Weight';

 rbreak after / summarize dol suppress;

10

Extending Compute Blocks
Using COMPUTE to Create a Text Column

 Years of
 Region Education Height Weight
 Mid West 14.31 66.85 172.54
 No. East 13.25 67.33 138.17
 So. East 15.00 69.00 159.14
 Western 12.63 67.25 182.00
 ======== ========= ====== ======
 Combined 13.78 67.45 161.78

Although not apparent from
an inspection of the table, the
column labeled REGION is
actually a computed
character variable.

 * Determine the region name;
 compute regname/char length=8;
 if _break_='_RBREAK_' then regname = 'Combined'; ï
 else regname = put(region,$regname.); ð
 endcomp;
 run;

ì Both REGION and REGNAME appear on the COLUMN statement.

í The column REGION will be used for grouping but will not be printed.

î The computed column REGNAME is created to hold the actual text (row headers) to be displayed.

ï This compute block will be executed once for each report row, including the summary row.

ð Use the PUT function to assign the text to REGNAME using the $REGNAME. format.

USING LOGIC AND SAS LANGUAGE ELEMENTS

Within the compute block we can use most of the power of the DATA step. This includes the use of functions, assignment
statements, SUM statements, and other executable statements. Some of the more commonly used statements include:

• ARRAY

• CALL routines and functions

• comments (all types are recognized)

• DO block, iterative DO, DO WHILE, DO UNTIL
(as in the DATA step, all DO loops and DO blocks expect the END statement)

• IF-THEN/ELSE and SELECT

• %INCLUDE

• SUM and assignment statements

Within these statements you can use SAS Language functions in the same manner as you would in the DATA step. Most
DATA step functions are available for use in the compute block. Functions that are not available include those (like LAG)
that operate against the Program Data Vector, PDV.

11

A counter has
been added
for each detail
row (within
region) of the
report.

Extending Compute Blocks
Using the SUM Statement
 Patient
 Clinic Mean
 region Number N Weight
 No. East 1 011234 2 195
 2 014321 2 195
 3 023910 4 105
 4 024477 4 107
 5 026789 2 115
 6 031234 4 179
 7 036321 4 130
 8 038362 2 112

 So. East 1 033476 4 156
 2 043320 4 178

The macro language can be used in the REPORT step and the compute block. The use of macro variables and macro
calls is essentially the same in the compute block as it is in other locations within SAS.

Using the SUM Statement with Temporary Variables

The SUM statement is as handy in the compute block as it is in the DATA step. In the following example we would like to
have a consecutive counter for items within a group.

proc report data=rptdata.clinics
 (where=(region in('1' '2' '3' '4')))

 nowd split='*';
 column region cnt clinnum (' Patient' wt=wtn wt);
 define region / group format=$regname.;
 define cnt / computed ' '; ì
 define clinnum/ group 'Clinic*Number';
 define wtn / analysis n 'N';
 define wt / analysis mean
 format=6. 'Mean*Weight';

 compute before region;
 clincount=0; í
 endcomp;
 compute before clinnum;
 clincount+1; î
 endcomp;
 compute cnt;
 cnt=clincount; ï
 endcomp;

 break after region/ suppress skip;
 run;

ì The computed variable CNT will be used to display the item numbers.

í CLINCOUNT is initialized to 0 BEFORE each new REGION.

î The SUM statement is used to accumulate the count of the clinics in CLINCOUNT.

ï The cumulative count in CLINCOUNT is written to the report item variable CNT.

12

Remember that CLINCOUNT is a temporary variable and while it can be used to accumulate the count, it cannot appear
on the report. On the other hand the computed variable CNT will appear on the report, however values of computed
variables are not retained from one row to the next and cannot be used with the SUM statement. This means that we need
to use to variables in the REPORT step where only one would be needed in the DATA step.

Repeating GROUP and ORDER Values on Each Row

One of the characteristics of GROUP and ORDER variables is that only the first item of a series of repeated values is
shown. Usually this is a preferred behavior, however you may want to show the group value on each row. In the following
example the GROUP variable’s value is repeated on every line.

proc report data=rptdata.clinics
 (where=(region in('1' '2' '3' '4')))

 nowd split='*';
 column region regname clinnum

 ('Patient Weight' wt=wtn wt);
 define region / group format=$regname. noprint; ì
 define regname/ computed 'Region'; í
 define clinnum/ group 'Clinic*Number';
 define wtn / analysis n
 format=5. 'N';
 define wt / analysis mean
 format=4. 'Mean';

 compute before region;
 * Load the formatted region into a temporary variable;
 rname = put(region,$regname.); î
 endcomp;
 compute regname / character length=12;
 * Move region from temporary variable to a report item;
 regname = rname; ï
 endcomp;
 break after region/ suppress skip;
 run;

ì REGION is used to form the groups, but it is not printed.

í The value of the repeated grouping variable will actually be displayed through REGNAME.

î The current formatted value of the grouping variable REGION is stored in RNAME. Since the value of the grouping
variable is only available on the first row of the group, the value must be assigned to RNAME once (BEFORE REGION)
rather than for each report row.

ï The value of the temporary variable RNAME is assigned to REGNAME.

13

Extending Compute Blocks
Repeating a Group Name

 Clinic Patient Weight
 Region Number N Mean
 No. East 011234 2 195
 No. East 014321 2 195
 No. East 023910 4 105
 No. East 024477 4 107
 No. East 026789 2 115
 No. East 031234 4 179
 No. East 036321 4 130
 No. East 038362 2 112

 So. East 033476 4 156
 So. East 043320 4 178
 So. East 046789 2 160
 So. East 049060 4 143

DOING MORE WITH THE LINE STATEMENT

The LINE statement is unique to the REPORT procedure step, and although it is roughly analogous to the PUT statement
in the DATA step there are some important behavioral differences. These differences become more apparent as we write
more complex compute blocks.

Primarily the LINE statement is used to write text to the report, however it can also be used to write computed values.

Creating Group Summaries

In the clinical study that we have been following, the manager of each of the four primary areas (or groups of regions) is
responsible for recruiting 8 clinics with an average of 5 patients for each clinic. The following report assesses the status
for each area as the study progresses.

14

The summary
following each set of
clinics within
regional area is
written using LINE
statements in a
COMPUTE AFTER
block.

Extending Compute Blocks
Using LINE for Group Totals

 Clinic Patient
 region Number Count
 Mid West 051345 2
 054367 2
 057312 2
 059372 2
 063742 4
 063901 4
 065742 4
 066789 2
 082287 2
 084890 2
 Total of 10 clinics is 125.0% of target
 Patient enrollment is 26
 Per clinic this is 52.0% of target

 No. East 011234 2
 014321 2

. portions of the report are not shown

proc report data=rptdata.clinics nowd split='*';
 column region clinnum n; ì
 define region / group format=$regname8.;
 define clinnum / group 'Clinic*Number';
 define n / width=7 'Patient*Count';

 compute before region; í
 clincnt = 0;
 patcnt = 0;
 endcomp;

 compute n; î
 if _break_= ' ' then do; ï

 * Within region patient count;
 patcnt + n; ð

 * Clinic count;
 clincnt + 1; ñ
 end;
 endcomp;

 compute after region;
* Fraction of target (8);

 clinpct = clincnt/8; ò
* Fraction of target (5);

 patpct = patcnt/clincnt/5; ó
 line @5 'Total of ' clincnt 3. ' clinics is ' ô

 clinpct percent8.1 ' of target';
 line @5 'Patient enrollment is ' patcnt 4.;
 line @5 'Per clinic this is ' patpct percent8.1 ' of target';
 line ' ';
 line ' ';
 endcomp;
 run;

ì The N statistic is added to the COLUMN statement.

15

í Before processing each region, reset the counters to 0.

î Set up the compute block that will be used to execute the SUM statement accumulators.

ï This compute block will be executed for each report row, and for clinic summary rows we need to update the patient and
clinic counters.

ð Each row represents the number of patients within the clinic.

ñ Each row in the final report represents one clinic.

ò CLINCNT is the total number of clinics within the region.

ó The fraction of patients per clinic relative to the target value (5) is calculated.

ô The LINE statement is used to write out the calculated values.

Variables used on the LINE statement are always followed by a format. While a format is not required on the PUT
statement, it is required on the LINE statement.

Adding Repeated Characters

The LINE statement can be used to generate repeated characters. To create a string of 30 dashes is as simple as
specifying the LINE statement as:

line @2 '--';

line @2 30*'-';

str = repeat('-',29);
line @2 str $30.;

The following example, which builds on the previous example, adds repeated text after the summary of each region.

16

Extending Compute Blocks
Using LINE for Group Totals

 Clinic Patient
 region Number Count

 __
 Mid West 051345 2
 054367 2
 057312 2
 059372 2
 063742 4
 063901 4
 065742 4
 066789 2
 082287 2
 084890 2
 Total of 10 clinics is 125.0% of target
 Patient enrollment is 26
 Per clinic this is 52.0% of target
 --

 No. East 011234 2
 014321 2

 Portions of the table not shown

Understanding LINE Statement Execution

Although the LINE statement initially seems to be very similar to the DATA step PUT statement, there are important
differences that can, at the very least, cause consternation on the part of the programmer. The primary difference is in the
way that REPORT executes the LINE statements.

The SAS language elements (statements, functions, etc.) are executed in sequence within the compute block in essentially
the same way as they are in the DATA step. However the LINE statements are not executed in sequence. After ALL of
the SAS language elements in the compute block have been executed, REPORT then executes all the LINE statements in
the order in which they appear in the compute block. This means that you can NEVER conditionally execute a LINE
statement with an IF-THEN/ELSE statement, nor can you use a LINE statement inside of a DO loop.

It is generally considered a good programming practice to always put all the LINE statements at the end of the compute
block as a visual reminder of this behavior.

CAVEAT:
For LINE statements that contain a temporary character variable, the variable is evaluated with the current value of the
variable.

ADDRESSING REPORT ITEMS IN THE PRESENCE OF NESTED ACROSS VARIABLES
The ACROSS define type is used when we want values of classification variables to be next to each other horizontally. In
this example we want to nest ACROSS variables, and we want to concatenate the values of two variables into one report
item. Because of the nested ACROSS variables, we are going to need to use the absolute column numbers, which use
the _Cxx_ column designations.

proc format;
 value $regname
 '1','2','3' = 'No. East'

17

 '4' = 'So. East'
 '5' - '8' = 'Mid West'
 '9', '10' = 'Western';
 value $gender
 'm', 'M' = 'Male'
 'f', 'F' = 'Female';
 value birthgrp
 '01jan1945'd - '31dec1959'd = ' Boomer' ì
 other = 'Non-Boomer';
 run;

title1 'Extending Compute Blocks';
title2 'Combining Values in ACROSS Columns';

proc report data=rptdata.clinics
 out=outreg í
 nowd;
 column region n sex,dob, î (wt=wtmean wt wtval);
 define region / group format=$regname. 'Area';
 define n / format=3. ' N';
 define sex / across format=$gender. ' ';
 define dob / across format=birthgrp. ' ';
 define wtmean / analysis mean noprint; ï
 define wt / analysis std noprint;
 define wtval / computed ' Mean (SD)';

 * Combine the WT values;
 compute wtval / char length=12; ð
 c5 = cats(put(_c3_,5.1),' (', ñ
 put(_c4_,7.1),')'); ò
 c8 = cats(put(_c6_,5.1),' (',
 put(_c7_,7.1),')');
 c11 = cats(put(_c9_,5.1),' (',
 put(_c10_,7.1),')');
 c14 = cats(put(_c12_,5.1),' (',
 put(_c13_,7.1),')');
 endcomp;
 run;

proc print data=outreg;
run;

ì Leading spaces have been added to the label to help center the text.

í When working with columns during the program development phase, it is sometimes helpful to print out the output data
set of the report so that the column numbers can be accurately determined.

î The comma has been used to nest the three weight variables within date of birth (DOB), which is in turn nested within
SEX. Notice that parentheses have been placed around the three weight variables to form a group that can be nested
within DOB.

ï The statistics for weight (WT and WTMEAN) are calculated, but the NOPRINT prevents their display.

ð Notice that although we use the compute block for WTVAL, this report item is never actually created. Instead, because
it is nested under ACROSS classification variables, we assign the computed values directly into the appropriate columns
using the absolute column numbers.

ñ The mean, _C3_, is added to the computed character string that will contain the statistics. We cannot address the mean
using the alias WTMEAN because of the nesting across age groups. This solution only works because we KNOW what is
contained in each of the columns. Notice that although WTMEAN is not displayed on the final report (because it has been
defined with the NOPRINT option ï), it still occupies columns (_C3 _, _C6 _, _C9 _, and _C12 _) on the output data set.

18

Extending Compute Blocks
Combining Values in ACROSS Columns

Obs region n _C3_ _C4_ _C5_ _C6_ _C7_ _C8_

 1 5 24 140.667 36.9504 140.7(37.0) 172.625 34.8668 172.6(34.9)
 2 1 24 119.222 20.6505 119.2(20.7) 112.000 0.0000 112.0(0.0)
 3 4 14 139.000 13.8564 139.0(13.9) 155.000 . 155.0(.)
 4 10 16 177.000 0.0000 177.0(0.0) 163.000 0.0000 163.0(0.0)

Obs _C9_ _C10_ _C11_ _C12_ _C13_ _C14_ _BREAK_

 1 161.000 20.2287 161.0(20.2) 200.143 33.4187 200.1(33.4)
 2 121.286 27.8132 121.3(27.8) 195.000 0.0000 195.0(0.0)
 3 170.667 27.6381 170.7(27.6) 158.000 18.9209 158.0(18.9)
 4 187.800 37.2451 187.8(37.2) 184.714 13.8770 184.7(13.9)

Extending Compute Blocks
Combining Values in ACROSS Columns

 Female Male

 Boomer Non-Boomer Boomer Non-Boomer
 Area N Mean (SD) Mean (SD) Mean (SD) Mean (SD)
 Mid West 24 140.7(37.0) 172.6(34.9) 161.0(20.2) 200.1(33.4)
 No. East 24 119.2(20.7) 112.0(0.0) 121.3(27.8) 195.0(0.0)
 So. East 14 139.0(13.9) 155.0(.) 170.7(27.6) 158.0(18.9)
 Western 16 177.0(0.0) 163.0(0.0) 187.8(37.2) 184.7(13.9)

ò The standard deviation, _C4_, is added to the computed value. The variable WT.STD would not be available for use,
because it is nested under an ACROSS variable.

The output data set WORK.OUTREG, can provide you a "snapshot" of the end result of the processing of the compute
blocks during the report row phase, and it can also be used to help us determine the column numbers that are used in the
WTVAL compute block. The absolute column numbers themselves are available for our use because they have already
been determined during the Setup Phase.

The final REPORT table is:

This final report shows how PROC REPORT can provide you some of the same functionality and ability to create cross-
tabular reports as PROC TABULATE (albeit with different syntax).

Using JUST=DEC

When the display value contains a decimal point, you can use it to align the numbers directly. The JUST=DEC attribute
option can be used to align the decimal points in the values in a column. In the following example the character variable X
takes on four values (the fourth does not have a decimal point).

title1 'Common REPORT Problems';
title2 'Vertically Concatenated Tables';
title3 'Decimal Point Alignment';

proc report data=test nowd;
 column x x=new;
 define x / display
 style={cellwidth=1in just=dec}
 'Using Just=' ;
 define new / display ;
 run;

19

20

The numbers in the left column
are aligned on the decimal point
even though the values are
coming from a character
variable.

PDF using the PRINTER style

The JUST=DEC style attribute does not work for the HTML destination, but it can be very useful in PDF and RTF.

USING COMPUTE BEFORE/AFTER WITH SUMMARY LINES

The processing steps associated with compute blocks become a bit more interesting when there are both COMPUTE
BEFORE or COMPUTE AFTER statements along with BREAK and RBREAK statements. Remember that while the
COMPUTE BEFORE / AFTER statements will generate a summary row in the computed summary information, that row
will NOT be written to the table unless there is a corresponding BREAK or RBREAK statement with a SUMMARIZE option.

As you read through this example keep in mind that a compute block associated with a summary row e.g. COMPUTE
BEFORE or COMPUTE AFTER, will ONLY be executed when its corresponding row in the computed summary information
is being processed. Compute blocks associated with report items, this includes computed variables, will be executed for
ALL report rows, including summary rows. When two or more compute blocks are to be executed for any given report
row, the report item compute blocks are always executed first (left to right). For a summary row any compute blocks
associated with that summary row (compute blocks with a BEFORE or AFTER) are only executed after all the report items
and their compute blocks have been processed.

The following somewhat contrived example demonstrates both the timing and the relationships between compute blocks
and report items. In this report, percentages are calculated for a grouping variable and, although it is a bit silly here,
percentages are also calculated across the entire report as well. In order to do this, two compute blocks are used to create
two temporary variables which hold the denominators for the two percentage calculations. TOTN ì holds the overall
number of students while TOTAGE í will hold the total number of students in each AGE group.

proc report data=sashelp.class(where=(age in(12,13)))
 out=out11_3_4a nowd;
 column age sex n percent;

 define age / group;
 define sex / group 'Gender' format=$6.;
 define n / 'N' format=2.;
 define percent/ computed format=percent8. 'Percent';

 break after age / summarize suppress skip;
 rbreak after / summarize;

 compute before;
 totn = n; ì
 endcomp;

21

During the setup
phase the incoming
data is read,
summarized and
stored in the
computed summary
information area of
memory. This
information is
processed during the
report row phase.

Summary Lines with a Percentage

Obs Age Sex n percent _BREAK_

 1 . 8 . _RBREAK_ ì
 2 12 5 . Age í
 3 12 F 2 0.40000
 4 12 M 3 0.60000
 5 12 5 1.00000 Age
 6 13 3 0.60000 Age í
 7 13 F 2 0.66667
 8 13 M 1 0.33333
 9 13 3 1.00000 Age
 10 . 8 1.00000 _RBREAK_

 compute before age;
 totage = n; í
 endcomp;

 compute percent; î
 if _BREAK_='_RBREAK_' then percent=n/totn;
 else percent = n/ totage;
 endcomp;
 run;

ì The overall number of students is stored in the temporary variable TOTN. This compute block is executed only once.

í The temporary variable TOTAGE is assigned the value of the number of students in this age group. This compute block
is executed at the start of each age group.

î This compute block is used to calculate the computed variable PERCENT. Because PERCENT is a report item, this
compute block will be executed for EVERY report row.

The incoming data is summarized and stored in the computed summary information during the setup phase. Therefore, at
the beginning of the report row phase the summary values are already available to be retrieved from memory when each of
the compute blocks execute.

By reviewing the output data set, we can see that the presence of the COMPUTE BEFORE block caused the _RBREAK_
information to be captured during the setup phase at the top of the report ì. During report row phase this compute block is
executed, and the previously summarized value of N is retrieved from memory (computed summary information area) and
then used to create the temporary variable TOTN. It is at this time that this row is also written to the output data set.

In the same fashion, the COMPUTE BEFORE AGE block í caused the setup phase to summarize age group data into the
computed summary information area. During the report row phase this compute block is executed when the second and
sixth report rows are processed. It is at this time that N is retrieved from memory and used in the calculation of the
temporary variable, TOTAGE.

During the report row phase the COMPUTE PERCENT block î will be executed for each report row, and the value of
PERCENT will be computed based on the values of the two temporary variables TOTN and TOTAGE. This of course
means that the value for PERCENT will be missing if either of these two temporary variables are missing. When the first
report row is processed, two compute blocks will execute (ì and î).

When more that one compute block is executed for a given report row it can sometimes be important to understand their
order of execution. For compute blocks associated with report items the compute blocks will always be executed from left
to right - in the same order as the variables on the COLUMN statement. It is also important to keep in mind that

22

Summary Lines with a Percentage

 Age Gender N Percent
 12 F 2 40%
 M 3 60%
 5 100%

 13 F 2 67%
 M 1 33%
 3 100%

 8 100%

COMPUTE BEFORE and COMPUTE AFTER blocks always execute after any compute blocks associated with report
items. This means that the results of all report item compute blocks will be available for use in COMPUTE BEFORE and
COMPUTE AFTER blocks. This also means that these same report item values can be altered and overridden in these
compute blocks.

When the first report row (observation 3 in the output data set shown above) is written, the count of 2 for the 12 year old
Females was divided by 5 which was the value for the TOTAGE temporary variable. Then the format of PERCENT8. was
applied to the result of the calculation and the first report row was completed and sent to all open ODS destinations (in this
case the LISTING destination is the only open destination).

The final report as shown in the LISTING destination is:

Processing and division happens the same way for the next report row (Males' summary information) and their count of 3
is divided by the TOTAGE (5) and the results were formatted with the PERCENT8. format and written to the report row.
Finally, the BREAK AFTER AGE statement executed and the total count of 5 was divided by TOTAGE (also 5), and after
the format was applied, the calculated value of 100% was written to the report row.

This same processing is repeated for the 13 year old section. Then on the last report row of the report, when it is time to
process the report row generated by the RBREAK, the summarized value for TOTN is retrieved from memory and used in
the division for PERCENT.

SUMMARY
The compute block is unique to the REPORT procedure and although it adds a great deal of power and flexibility, it also
can add a coding complexity that can confound the new user. While the compute block supports of number of SAS
language elements that are more commonly thought of as a part of the DATA step, programming knowledge and
techniques that are useful in the DATA step are not always applicable in the compute block. For other than the simplest of
compute blocks, it quickly becomes important for the programmer to understand the differences between the compute
block and the DATA step.

It is tempting to want to assign DATA step like sequential processing to the report row phase, however, PROC REPORT
holds all the needed summary information in memory, so it is available for both COMPUTE BEFORE and/or COMPUTE
AFTER processing during the construction of each report row. The process is different enough from the DATA step that
we can confuse what is actually happening if we depend too much on our DATA step processing knowledge. This
becomes even more apparent as we add a report item with a define usage of ACROSS.

ABOUT THE AUTHOR
Art Carpenter’s publications list includes four books, and numerous papers and posters presented at SUGI and other user
group conferences. Art has been using SAS® since 1976 and has served in various leadership positions in local, regional,
national, and international user groups. He is a SAS Certified Advanced ProgrammerTM and through California Occidental
Consultants he teaches SAS courses and provides contract SAS programming support nationwide.

23

AUTHOR CONTACT
Arthur L. Carpenter
California Occidental Consultants
10606 Ketch Circle
Anchorage, AK 99515

(907) 865-9167
art@caloxy.com
www.caloxy.com

REFERENCES
Some of the tables, text, and examples in this paper have been borrowed with the author’s permission from the draft of the
SAS Press book with a working title of Carpenter’s Complete Guide to the SAS REPORT Procedure.

Carpenter, Arthur L., 2006a, “In The Compute Block: Issues Associated with Using and Naming Variables”, published in
the proceedings of the 14th Annual Western Users of SAS Software, Inc. Users Group Conference (WUSS), Cary, NC:
SAS Institute Inc., paper DPR_Carpenter.

Carpenter, Arthur L., 2006b, “Advanced PROC REPORT: Traffic Lighting - Controlling Cell Attributes With Your Data”,
published in the proceedings of the 14th Annual Western Users of SAS Software, Inc. Users Group Conference (WUSS),
Cary, NC: SAS Institute Inc., paper TUT_Carpenter.

TRADEMARK INFORMATION
SAS, SAS Certified Professional, and all other SAS Institute Inc. product or service names are registered trademarks of
SAS Institute, Inc. in the USA and other countries.
® indicates USA registration.

